Network Patch Cable Buying Guide
Welcome to the ultimate guide to network Ethernet cables! Whether you're a tech enthusiast or a novice looking to set up your home network, understanding Ethernet cables is essential. In this comprehensive guide, we'll dive deep into everything you need to know about these cables, from their different types and categories to their uses and advantages.
Ethernet cables are the backbone of modern networking, connecting devices like computers, routers, and switches to ensure seamless data transmission. By choosing the right Ethernet cable, you can optimize network performance, minimize latency, and improve overall internet speed. Throughout this guide, we'll explore the various types of Ethernet cables, including Cat5, Cat6, Cat7, and more. We'll discuss their differences, advantages, and which one is suitable for specific applications, such as gaming, streaming, or business networking. Additionally, we'll address common misconceptions and pitfalls, allowing you to make informed decisions when purchasing Ethernet cables. So, whether you're looking to upgrade your existing setup or starting from scratch, buckle up, and get ready to become an Ethernet cable expert with our comprehensive guide.
Understanding Ethernet cable categories and standards
Cat5e (Category 5 enhanced)
- Max. Speed Up to 1 Gbps
- Available in Shielded and Unshielded varieties.
In 1995, Category 5 cable was introduced. It provided 100 Mbps network speeds with 100 MHz bandwidth and could send network data packets up to 100 meters (328 feet) without amplification. The cable's capabilities were a big leap forward, but they pale in comparison to what came next: Cat5e, or enhanced Category 5, cables. This improved version of Cat5 cabling was able to push the data transfer rate to 1 Gbps — ten times the previous rate. Even though this type of cable is more than 20 years old by now, it is still very popular and widely used. Newer standards have emerged since then, with Cat6, Cat6a and Cat8 being officially recognized by the Telecommunications Industry Association (TIA), with Cat7 still waiting to receive the TIA's blessing.
Cat6 (Category 6)
- Max. speed up to 10 Gbps @ 55 m (164 ft.)
- Available in Shielded and Unshielded varieties.
Category 6 supports data transfer speeds up to 10 Gbps at 250 MHz along with improved crosstalk protection. The standard only supports the 10 Gbps speed up to 55 meters (164 feet), so if you need higher bandwidth in your network, Cat6 is the entry-level choice. Both Cat5e and Cat6 begin to become part of the bottleneck in your network as we see continuously faster Internet connections in both the home and office environment.
Cat6a (Augmented Category 6)
- Max. speed up to 10 Gbps @ 100 m (328 ft.)
- Available in Shielded and Unshielded varieties.
- Max. Speed Up to 10 Gbps
- Only Shielded
- Best to be avoided
Category 7 was ratified as a standard in 2002 as per the ISO/IEC 11801, but still is not recognized by EIA or TIA. Cat7 never superseded Cat6a since neither of the governing bodies approved the standard. As such, you will see many different claims from suppliers. Further confusion and uncertainty arose when two companies developed their own patented designs for new connectors (TERA developed by The Siemon Company; GG45 developed by Nexans). If you use Cat7 cable with Cat6a modular plugs, you will have better performance. Realistically, Cat6a is your better choice as it is a supported official standard, and you can be assured of quality and data integrity. Cat7 supports the same transmission speed and distance as Cat6a — 10 Gbps up to 100 meters (328 feet) — but at 600 MHz with even less crosstalk.
Cat8.x (Category 8, 8.1 [Class I]and 8.2 [Class II])
- Max. Speed Up to 40 Gbps- Only Shielded
Cat8 is recommended for data-center environments or high-speed switch-to-switch and server communications in a 25 Gbps or 40 Gbps copper network. Cat8 is the best choice unless you want to install a fiber network, too. Due to the design, Cat8, Cat8.1 and Cat8.2 support transmission speeds of 10 Gbps up to 100 meters (328 feet) or 25 Gbps and 40 Gbps up to 30 meters (98.5 feet) with an impressive 2,000 MHz frequency that even better prevents crosstalk. Where Cat8 and 8.1 are backward compatible, Cat8.2 is not since it does not use standard RJ45 connectors.
Category | Maximum Transfer Speed | Maximum Bandwidth | Shielding | Official Standard |
---|---|---|---|---|
Cat 1 | 1 Mbps | 1 MHz | unshielded | yes |
Cat 2 | 4 Mbps | 4 MHz | unshielded | yes |
Cat 3 | 10 Mbps | 16 MHz | unshielded | yes |
Cat 4 | 26 Mbps | 20 MHz | unshielded | yes |
Cat 5 | 100 Mbps | 100 MHz | unshielded | yes |
Cat 5e | 1,000 Mbps | 100 MHz | unshielded + shielded | yes |
Cat 6 | 1,000 Mbps | 250 MHz | unshielded + shielded | yes |
Cat 6a | 10 Gbps | 500 MHz | unshielded + shielded | yes |
Cat 7 | 10 Gbps | 600 MHz | shielded | no |
Cat 8 | 40 Gbps | 2 GHz | shielded | yes |
(top)
Different Ethernet Cable Shielding Types Explained
All standard Ethernet cables, with the exception of Cat8 cables, are available with or without shielding. Shielding protects the cable from electromagnetic interference (EMI), radio frequency interference (RFI) and can also reduce crosstalk between pairs and adjacent cables. Shielding can be crucial in environments with high electronic noise, ensuring stable and faster data transmission.
ISO/IEC11801 Name | Common Name | Outer Shielding Type |
---|---|---|
U/UTP | UTP | None |
U/FTP | STP, PiMF, ScTP | None |
F/UTP | FTP, STP, ScTP | Foil Shielding |
F/FTP | FTP | Foil Shielding |
S/UTP | STP, ScTP | Braid Shielding |
S/FTP | SSTP, SFTP, STP PiMF | Braid Shielding |
SF/UTP | SFTP, STP | Braid & Foil Shielding |
SF/FTP | SFTP, STP | Braid & Foil Shielding |
UTP
STP, PiMF, ScTP
FTP, STP, ScTP
SSTP, SFTP, STP PiMF
SFTP, STP
SFTP, STP
(top)
Solid vs. Stranded Ethernet Cable
We have described the various categories, seen the different shielding types and gone over their respective performance figures. Another difference in the types of Ethernet cables lies buried deep inside the core of the cable, or more specifically, the copper core itself. The core can be either solid with a single conducting wire, or it can be stranded with multiple strands of copper wrapped around each other. Each of these designs has advantages and disadvantages. We are going to take a closer look at each of them so you will have a better understanding of when to choose solid and when to choose stranded cables.
Solid Wire Ethernet Cable
Solid wire, also referred to as permalink cabling, is less flexible than stranded wire. While that is a disadvantage, solid wire cabling provides some key advantages, making them the default choice for horizontal cable runs (e.g., structured wiring within buildings):
- Solid cables are better electrical conductors. They provide superior, stable electrical characteristics over a wider range of frequencies, lower susceptibility to high-frequency effects and lower DC resistance than stranded cables.
- In Power over Ethernet applications, solid cables are the preferred choice in environments that aren’t temperature controlled, such as a ceiling. Due to the lower DC resistance, less power dissipates as heat, which is a distinct advantage, especially if the cable is longer than 4.5 meters (15 feet).
- They are easy to punch down into insulation-displacement connectors (IDCs) such as wall jacks and patch panels.
Stranded Ethernet Cable
Stranded wires are primarily used for shorter patch cables, where the higher DC resistance is less of a concern.
- Stranded cables are easier to route than solid cables due to their greater flexibility. This makes stranded cables easier to install and less prone to damage from bending.
- The amount of strands that are used determine the degree of flexibility the cable provides. The more strands are used, the more flexible the cable becomes. On the other hand, the more strands that are used, the higher the manufacturing cost. Therefore the common stranded wire balances the need for greater flexibility and cost.
(top)
Copper or CCA Cables
Advantages of CCA/CCE Ethernet Aluminum Cables
CCA cables are universally maligned in the networking world, and arguably for good reasons. Nonetheless, below is a shortlist of what's good about CCA cables.
- Due to using aluminum during the manufacturing process, CCA cables are cheaper to make and cheaper to buy.
- CCA cables are generally lighter than pure copper cables, which reduces the shipping cost, and again makes them cheaper to buy.
- Although CCA cables do not perform nearly as well as pure copper cables, regardless of which metric you're looking at, they can still represent good value. At the end of the day, these cables work just fine to connect the ISP's cable modem to a WLAN router or a Desktop PC to a SOHO Ethernet switch. In short-distance SOHO applications, CCA cables will get the job done. Any claim to the contrary is simply incorrect. A quick search on Amazon reveals that cheaper CCA cables are rated surprisingly high.
If you think this sounds like a ringing endorsement, you are mistaken. CCA cables have numerous disadvantages, some of which are listed here. However, they are not the wicked cable that brings the (networking) world to an end.
Advantages of 100% Copper Ethernet Cables
There are not shortcuts taken during the manufacturing process of these cables. The conductor is made from 100% copper, and it is available in either solid or stranded form.
- Copper cable is much better suited for longer-distance network connections. That’s because copper has lower electrical resistance (attenuation) compared to aluminum. Especially on longer connections, this can make the difference between a solid connection (copper) and a slow and flaky connection (CCA).
- CCA cables lack compliance and do not have a valid safety listing per the National Electrical Code (NEC). The installation of CCA cables in buildings that require CM-, CMG-, CMX-, CMR- or CMP-rated cables is a code violation and thus not legal. Copper cables, on the other hand, are generally compliant with TIA and ISO/IEC standards.
- Copper cable is much more resilient against oxidation and corrosion. Aluminum oxidizes quickly when exposed to air, which can cause connectivity issues at the connectors.
- Copper cable is ideally suited for Power over Ethernet (PoE) applications, whereas CCA cable isn’t. CCA cable has a higher DC resistance and leads to undesirable effects. Heat can build up faster in CCA cables, and the voltage can drop over the lengths of the cable. Neither is a good thing, and CCA cables simply have no place in PoE installations.
(top)
What is AWG?
28AWG and 30AWG type cables are often referred to as Slim Ethernet Cables, or Slim Patch Cables.
(top)
Slim Patch Cables vs Regular Patch Cables
Slim or slim run cables are becoming increasingly popular. Anything thicker than 28AWG or 30AWG cable is considered a standard gauge patch cable (for example, 24AWG).
Advantages of Slim Network Cables:
- As a slim patch cable is more than 30% thinner than regular cable, it uses less space, which can be an advantage in tight and crowded spaces.
- Slim patch cable can improve airflow and thus help provide better equipment cooling
- Slim cables can pass the Fluke test for Cat6, and even Cat8 (shorter cable, that is), and they can be used with PoE applications
- 28AWG cabling is compliant with ANSI/TIA-568.2-D for lengths of up to 15 meters (49 feet).
Disadvantages of Slim Network Cables:
- While shorter Slim Patch Cables can indeed pass the Fluke standards network test, 30AWG Slim Patch Cable is not compliant with the ANSI/TIA-568.2-D standard, which requires cables to be 22AWG to 26AWG. 28AWG is only permissible for lengths not exceeding 15 meters (49 feet).
- Slim patch cables have a higher DC resistance and higher insertion loss, which limits the length to a maximum of 15 meters (49 feet).
- Slim cables are often more expensive than the regular equivalent cable
(top)